MATH 121A Prep: Proofs

Facts to Know:

Induction: Proof technique for showing a statement is true for all for all positive integers

· Base Case: Prove true for n=1 (smallest value you can about)

• Inductive Step: If true for Λ , its also true for $\Lambda+1$.

Quantifiers:

· There exists:] I have for something in the set

· For all: If the for every single element in the set

Negation of quantifiers:

· Negation of there exists: regate 3 "statement" -> V regation statement

· Negation of for all: regate & statement > 3 regation Statement

Examples:

1. Let $A = \begin{bmatrix} a & b-a \\ 0 & b \end{bmatrix}$. Prove the formula $A^n = \begin{bmatrix} a^n & b^n-a^n \\ 0 & b^n \end{bmatrix}$ show this equality holds

Base Case: n=1 $A' = A = \begin{bmatrix} a & b-a \\ 0 & b \end{bmatrix} = \begin{bmatrix} a' & b'-a' \\ 0 & b' \end{bmatrix}$ Induction Step: Assume $A' = \begin{bmatrix} a & b-a \\ 0 & b' \end{bmatrix}$ $A'' = AA' = \begin{bmatrix} a & b-a \\ 0 & b \end{bmatrix} = \begin{bmatrix} a & b'-a \\ 0 & b' \end{bmatrix} = \begin{bmatrix} a & b'-a' \\ 0 & b' \end{bmatrix}$ $A'' = AA' = \begin{bmatrix} a & b-a \\ 0 & b \end{bmatrix} = \begin{bmatrix} a & b'-a \\ 0 & b' \end{bmatrix} = \begin{bmatrix} a & b'-a' \\ 0 & b' \end{bmatrix} = \begin{bmatrix} a & b'-a' \\ 0 & b' \end{bmatrix}$ Therefore this is frue for all $A \ge 1$.

- 2. Convert the following statements between words and mathematical notation:
 - (a) For all objects y in a set Y there exists an x in X such that f(x) equals y.

YyeY 3xeX such that f(x)=y.

- (b) $\exists \vec{v_1}, \vec{v_2} \in \mathbb{R}^2$ such that $\forall \vec{w} \in \mathbb{R}^2 \exists ! c_1, c_2 \in \mathbb{R}$ where $\vec{w} = c_1 \vec{v_1} + c_2 \vec{v_2}$ There exists vectors $\vec{V_i}$, $\vec{V_2}$ in \mathbb{R}^2 such that for all \vec{w} in \mathbb{R}^2 there exists unique c_1, c_2 in \mathbb{R} where $\vec{w} = c_1 \vec{v_1} + c_2 \vec{v_2}$.
- 3. Write the negation of the above statements:

(a) There exists y in Y such that for all xe X we have $F(x) \neq y$.

(6) $\forall \vec{v_1}, \vec{v_2} \in \mathbb{R}$, $\vec{\exists} \vec{\omega} \in \mathbb{R}^2$, $\forall c_1, c_2 \in \mathbb{R}$ Hen $\vec{\omega} \neq c_1 \vec{v_1} + c_2 \vec{v_2}$